Uniform s-Cross-Intersecting Families

نویسندگان

  • Peter Frankl
  • Andrey Kupavskii
چکیده

In this paper we study a question related to the classical Erdős–Ko–Rado theorem, which states that any family of k-element subsets of the set [n] = {1, . . . , n} in which any two sets intersect, has cardinality at most (︀ n−1 k−1 )︀ . We say that two non-empty families are A,B ⊂ (︀[n] k )︀ are s-cross-intersecting, if for any A ∈ A, B ∈ B we have |A ∩ B| ≥ s. In this paper we determine the maximum of |A|+ |B| for all n. This generalizes a result of Hilton and Milner, who determined the maximum of |A|+ |B| for nonempty 1-cross-intersecting families. MSc classification: 05D05

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The maximum product of sizes of cross-t-intersecting uniform families

We verify a conjecture of Hirschorn concerning the maximum product of sizes of cross-t-intersecting uniform families. We say that a set A t-intersects a set B if A and B have at least t common elements. Two families A and B of sets are said to be cross-t-intersecting if each set in A t-intersects each set in B. For any positive integers n and r, let ([n] r ) denote the family of all r-element s...

متن کامل

On cross-intersecting families of independent sets in graphs

Let A1, . . . ,Ak be a collection of families of subsets of an n-element set. We say that this collection is cross-intersecting if for any i, j ∈ [k] with i = j, A ∈ Ai and B ∈ Aj implies A ∩ B = ∅. We consider a theorem of Hilton which gives a best possible upper bound on the sum of the cardinalities of uniform cross-intersecting families. We formulate a graphtheoretic analogue of Hilton’s cro...

متن کامل

Intersecting Families — Uniform versus Weighted

What is the maximal size of k-uniform r-wise t-intersecting families? We show that this problem is essentially equivalent to determine the maximal weight of non-uniform r-wise t-intersecting families. Some EKR type examples and their applications are included.

متن کامل

On cross-intersecting families

Frankl, P., On cross-intersecting families, Discrete Mathematics 108 (1992) 291-295. Let n 3 t z 1 be integers. Let 9, YI be families of subsets of the n-element set X. They are called cross t-intersecting if IF n GI 2 t holds for all F E 9 and G E 3. If 9 = CfI then 9 is called t-intersecting. Let m(n, t) denote the maximum possible cardinality of a r-intersecting family. Our main result says ...

متن کامل

Most Probably Intersecting Hypergraphs

The celebrated Erdős-Ko-Rado theorem shows that for n > 2k the largest intersecting k-uniform set family on [n] has size ( n−1 k−1 ) . It is natural to ask how far from intersecting larger set families must be. Katona, Katona and Katona introduced the notion of most probably intersecting families, which maximise the probability of random subfamilies being intersecting. We consider the most prob...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Combinatorics, Probability & Computing

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2017